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The energy characteristics of the damping of solutions of variational type sys- 
tems of equations are introduced and their properties are investigated. Con - 

sidered as examples are the classical question concerning the damping of sol- 
utions in semi-infinite cylindrical and conical domains, as well as the question 
of the damping of solutions upon receding from the edge of a thin three -di - 

mensional cylindrical domain (plate 1. 

l.Formulation of the problem.Letusconsidera domain I’ with a piece- 
wise -smooth boundary 31’ in an n -dimensional space R,, , The functions 
wa(u, b = 1,. . ., m) oftheCartesiancoordinateszi(i,j,k,I::O, 1,. . ., n - 1) 

which are solutions of a system of equations of the form 

(1.1) 

are defined in I/ ) where the energy density U is a nonnegative function of xi, 

Wa, W,ia s dw” / dxi, which is convex in the set of variables wqL, W,i’ , and 

summation is over the repeated subscripts. 
Let a certain domain a, on which the quantities pnk nli :=- yi, are given, 

be isolated on the surface 8)’ (pnk := ai7 / 8W.k.’ and 12~ are components of the 

vector normal to av). We give homogeneous boundary conditions on the remaining 

part S of the surface av . For definiteness, it can be considered that either 

Pak&i = 0 or wa = 0, or the boundary conditions are mixed on S . 

We assume that a unique solution of (1.1) with finite energy 

exists for the boundary value data gu . 
If the energy density has a kernel (vanishes on nonzero functions of w”), and the 

boundary conditions do not exclude it, then additional conditions which are considered 

advanced, can be required for uniqueness of the solution. 
Let us select the boundary data (I,~ on Q from a certain set hf. Find theset 

&f for which solutions of (I.. 1) will decrease with distance from Q and describe 

the nature of the decrease. As a rule, it is interesting to investigate the broadest set 
M, the set i%fX of all boundary data qa for which the solution has finite energy. 

A number of assertions is presented below just for the Laplace equation (taking ac - 
count of the inhomogeneity and anisotropy > , and the system of equations of linear el- 
asticity theory 

2U = Eii (~“) ru~iw~j (1.2) 

140 
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(1.3) 

The quadratic forms (1.2 ) and (1.3 ) are positive definite. The investigation of the 
question posed for the system (1.3 > is related to the foundation of the Saint- Venant 

principle Cl - 6 1. 

Let us select a system of coordinates 2’ so that 
the surface a would lie on the coordinate 
surface x0 rz 2 = 0. The coordinates ti may 
hence turn out to be curvilinear . Let 9 (z) de- 

note a section of the domain Ti by the coor - 
dinate planes z = const, Q (c)) = Q. The 
section Q (2) divides the domain v and its 
boundary aV into two parts. Those parts of V 
and air which do not contain a aredenoted 

by V (5) and s (X), v (0) = v and 

S (0) = S (seeFig.1). 
Following [5], we take the energy of the sol- 

ution E (5) in the domain V (z) 

I 

Fig, 1 E (x) = s TJdV 

‘t’(s) 

as the main characteristic of the solution, 
The function E (x) is decreasing because of the positivity of 7_J . Characteristics 

of the damping of E (x), independently of the selection of boundary data from N are 
presented and investigated below. An elementary proof is given of the exponential dam- 
ping of the energy in semi-infinite cylindrical domains and of the power-law damping 

in conical domains, A class of systems is described, for which exponential energy dam- 

ping holds independently of M and the geometry of the domain V . The relation 
between the energy characteristics introduced and the eigennumbers is indicated for the 

systems (1.2) and (1.3 ) in the case of a semi-infinite cylindrical domain. Certain sets 

of M for which the solutions of the systems (1.2 1 and (1.3 ) damp out exponentially 
with removal from the edge of a thin three-dimensional cylindrical domain, are indi. - 
cated. In this connection, a method is given for constructing the approximate solutions 
in thin domains with an error less than any power of the relative thickness. 

Let us note that a theorem of the mean is proved for the systems (1.2) and (1.3 ) in 
the case of homogeneity and isotropy [7 ] : the square of the stress at the center of a sphere 
does not exceed the energy of the sphere 

puip: < c 1 U dv (1.4) 

Hence, pointwise estimates [S ] result from the energy estimates. 

2, The function Y- Let us examine the following boundary value problem 
for the system of equations (1.1) in the domain v (x) : The boundary conditions on 

S ($I are the same as in the initial problem while paan& = qa aregiven on Q (z) . 
The boundary data on B (x) are selected from a certain set M (z). Hence: 1) the 
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quantities paknk on il (x), where Pa’ . 1s the solution of the initial problem in 
T/‘, enter into M (x) for any boundary data on &? from M; 2) M (0) ZZ M; 

3 1 a solution with finite energy exists in the domain V (z) for any qa from&f (z) . 
In general, for any boundary data from M (2) a solution of the problem posed can 

be found and the appropriate “surface” and volume energies 

J&(&J = s Udo, Ev(q,) = l Udv 
W) v(x) 

can be calculated. 
The argument & emphasizes the dependence on the selection of the boundary 

data in fl (z). Xt is not exciuded that thesurface energy becomes infinite for certain qa . 
Let us define the quantity y by the relationship [S 3 

According to (2.1) the quantity y has the dimensionality (length)-’ and is a 
function of z. The function y (2) depends on the geometry of the domain V, the 
coefficients &‘,, . . . , Es in the energy U, the selection of Q (z) andM (z)and 
is independent of the specific boundary data Qa displayed in Q (z) . 

Let E (z) be the energy of any solution corresponding to the boundary data pa from 
M. Let us show that the estimate 

holds for E (2) . Indeed, from (2.1) 

y(x)E(x)< ‘Udo = - g a 

(2.2) 

(2.3) 

from which (2,2 1 results, 

Notes. I.) The estimate (2.2) is understandably meaningful only in case Y (5) 
f 0. This latter is proved in [6] for linearly elastic bodies; the proof for other linear 

systems is analogous ( +) . 
2 ) It can be seen that the estimate (2.2 ) remains valid if the domain of variation 

of the coordinates x1, . . ., F-l varies by a jump, as holds for a cylindrical rod 

comprised of two rods with different cross-section. 

3, On the calculation of Y- The definition (2.1) does not appear con - 
strut tive . Nevertheless, thedependenceof Y on z is explicitly found successfully 

“1 After the paper had been sent to press, a number of papers [8- 111 appeared in 
which inequalities were obtained which, essentially, represent some lower bounds for 

Y for one elliptic equation and for the equations of elasticitytheory.These estimates 
permitted an indication of the uniqueness class of the solutions of boundary value prob- 
lems in unbounded domains. Analogous questions were investigated for parabolic eq- 
ations in f-12.1. 
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in a number of cases characterized by the presence of a sufficiently rich symmetry 
group in the problem s Let us Glustrate the above by examples. 

1’. Semi-infinite cylinder with a free surface. Let the domain 
V be a semi -infinite cylinder with a generator along the E axis, II: > 0, 52 

is the base of the cylinder in the z=O plane, paknk=O on S, M= 
n/r(s) = ikf” and U explicitly independent of 2. It follows from the definition 
(2.1) that the function Y (9 is invariant relative to tra~~tiom along the 5 axis t 
and therefore, is a constant, Therefore 

E (X) < E (0) e-‘= (3.1) 

Furthermore, let the energy density (i be explicitly independent of the remain - 
ing coordinates. Then Y is a function of the diameter h of the domain a, the 
shape of D and the coefficients E,, . . ., E, in U. If E,,. , ., E, have a 
dimensionality independent of the length, then by the Z -theorem 113 1 

y = y” i h (3.2) 

where y* is a function of the cross-sectional shape and dimensionless quantities for- 
med from E,,, . ., ES . Formula (3.2 > is valid particularly for systems with the 
energies (1.2 ) and (1.3 1. 

The relationships (3.11, (3.2 > and (1.4) show that solutions with finite energies 
in a semi-infinite cylinder are always of boundary layer nature, 

2#. Self-equilibrated boundary data and finiteness of the 
energy . In cases when the energy density has an invariance group, the condition of 
finiteness of the energy In problems with a free bcnmdary imposes a number of con- 
straints on the boundary data. Let us find these constraints, 

Let U have an r -parameter invariance group: U (3, rf?, w,*~) = U (Xi, 
wpa, W,i’@), where wfa = wa + *aa (xk) 09, o+, . . ., d are group para- 

meters, and %” are known functions of 2’. Then there are r integrals 

(@Cl jaw:,> = P, = const (3.3) 

in the problem. Here ( l ) is the integral over the cross section. Indeed, there re- 
sults from the invariance of U that the identity *sai3U I dwa + &,kaaU ! dug 
z 0 is valid for any wa , Multiplying (1.1) by &‘, integrating over the cross 

section and using the identity noted and the boundary conditions on St we obtain d <&” 
au I aw,,aj t ax = 0, from which (3.3 ) follows, 

Let us assume that U possesses the following property 

from u-+o=3au~awp,+o (3.4) 

The condition of finiteness of the energy means that U -+ 0 as 2 * 00. It 
follows from (3.4) that $U / dw,xa + 0 as x -+ 00. As a rule I this permits evalu- 
ation of the constant P, in (3.3 ) . From (3.3 ) and the boundary conditions on fi 
we obtain the constraints on the edge data 

($)sa¶tJ = - p, 
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Let us illustrate the above by an example of the system (1.2). The boundary con- 

ditions for 5 = 0 have the form - r3U f &i.?,, = 4. The energy density satisfies the 
condition (3,4) and is invariant relative to translations in W : w’ = W + $m, I$ z 1. 

Letting 5 tend to infinity, we fmd from (3.3 ) that P = 0, and therefore 

<4> = 0 (3.5) 

If W is the temperature (potential incompressible fluid flow ), then E has the mean- 
ing of dissipation (kinetic energy ), and (3.5 ) is the condition that the total heat flux 

(fluid discharge) is zero, 
The energy density of an elastic solid has a six-parameter invariance group ( the 

group of body motions as a solid), In conformity with this, the condition of finiteness 
of the energy results in six constraints: the conditions that the resultant and total moment 

of the forces applied on Sz will vanish. 
We shall designate the edge data satisfying conditions of the type (3.5) as self - 

equ~~brated , The retirement of set-equi~bration of the edge data, as well as their 
certain smoothness (for the system (1.2 ) and (1.3 ) ga E L,) , is sufficient for the 
existence of a solution with finite energy. 

3’. Semi-infinite cylinder with “clamped” section of the 
side surface. Let us divide the boundary r of the domain &I into two parts: 

I’, and JTui and let usset S, = rP X f0, ml, S, = rw X IO, 001. 
We consider that paknk = 0 on S, and wa = 0 on S, . Exactly as in 

Sect, 1 ‘I we arrive at (3.1) and (3.2). However, the condition of finiteness of the 

energy is now not related to the condition of self-equilibration of the edge data since 
(3.3 ) does not hold, The stresses in an elastic body (the heat flux ) will damp expon - 
entially even in the case when the total forces and moments on the endface ( total 

heat flux ) differ from zero. 

4°. Semi-infinite cylinder with periodic boundary conditions, 
Let periodic boundary conditions be given on the half-space boundary, Isolating an 
elementary periodically repeated cell on the boundary, we arrive at the problem of a 
semi-infinite cylinder with cross-section in the form of a parallelogram on whose op - 
posite edges the periodicity conditions of ~8 and pa” are imposed. Repeating the 

discussion in Sect. 2 and 3. 1’ word for word, we obtain (3.1) and (3.2) 

5O* On the formulation of the Saint-Venant principle for 
cylindrical elastic rods, Examples 3 ‘, 4 ’ show that self-equilibration of the 
load cannot be a necessary condition for damping the stresses. The general criterion is 
a condition for finiteness of the energy : in order for the stresses to damp exponentially 
with distance from the endface of a semi-infinite cylindrical. elastic rod homogeneous in 
direction of the axis , on whose side surface either the surface forces or displacements vanish 
or the periodicity conditions aresatisfied, it is necessary and sufficient that the energy of the 

rod be finite. The rate of energy damping y for a completely homogeneous rod has 

the form y = y* / h, where y* depends only on the shape of the cross-section and 
the elastic moduli, and h is the diameter of the cross-section. 

The necessity of the assertion is evident, the sufficiency is proved in Sects. lo-4 ‘. 
For a rod of finite length 1 the condition of finiteness of the energy in the 
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previous formulation must be replaced by the requirement: the energy will remain 

bounded as l--t 00. 
Later only the systems (1.2) and (1.3 ) are examined to the end of Sect. 3. 

6”. Expanding cone. Letustakethedomain Q inthe z = Oplane,and 

draw lines through points of the boundary Q and a point lying on the negative part 

of the J -axis at a distance I from the origin (see Fig. 2 ) . 

Fig. 2 Fig. 3 

We consider the expanding cone V 
the conical surface being obtained, 

to be part of the half-space x > 0 lying within 
We consider the conical part of fhe boundary free. 

Let us set ikf (x) = M. T wo methods of selecting the set M are hence most in- 
teresting : M = Jfx andM = M**, where Mxx is the set of self- equilibrated edge data. 

In contrast to the problem of Sect. 1”) these sets are distinct (for example, quantities of 

the type (au / aw, ,> are independent of x for the system (1.2 1, however, they 
do not vanish absolutely since the domain of integration increases together with the decrease 

in au I a+ as 2-h 00 ). 

First let M (z) = M”“. It follows from the definition (2.1) that Y depends 
on x -I- I?, the shape of 52, the solid angle of the cone cc and the parameters 

E,,. . . , E,. According to the Z -theorem 

Y = y* / (5 + 0 
(3.6) 

where y* has the same meaning as in (3.2 ). Introducing y (0) = y* / 1, then (3.6 > 
can be rewritten as y = y (0) (1 + x / I)-'. The estimate (2.2 ) becomes 

E(x)< E,, (1 + z/ Z)-y(o)[ (3.7 1 

Therefore, the energy decreases in the case of a cone, at least, according to a 
power law with the exponent y (0) 1. It is natural to expect that Y (0) depends 

continuously on the cone shape and tends to the appropriate value of the constant Y 

for a cylinder - y. upon degeneration of the cone into a cylinder (as 1 --t 00 1. 
Hence, the power law of the decrease (3.7 ) goes over Into the exponential law (3.1) 
for edge data with an identical value of the total energy E. . 

If M (x) = W then reasoning analogously, we arrive at (3.7 1, however, 
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the passage to the limit from a cone to a cylinder becomes impossible since Ea hence 
generally becomes infinite, 

7Or Contracting cone, Now, let us set the cone apex at the point x = i 
of the positive part of the 2 -axis, hence the domain will be bounded by a cone and 
a section of the plane B (Fig. 3 ) and have a finite volume, Let the conical part of 
the boundary V be free W In the case under consideration y is a function of (Z-Z), 
the shape of 52, the solid angle of the cone, and the parameters E,, Es,. . ., E,. 
According to the n -theorem ) y = y* I (1 - 8) = y (0) (1 - 2 / q-1. The 
estimate (2.2) yields 

E (X) .< E (0) (1 - z / ~)~~O)Z (3.8) 

AS Z--f co a (3.8) goes over into(3.1). Formulas(B.l), (3.7) and (3.8) per- 
mit tracing how the nature of the damping depends on the body shape. As the expan - 
ding cone contracts (~e”appr~ch” of the free boundary to the loading site) the power- 
law damping speeds up until it passes over into an exponential law. As the cylinder 
“collapses” further) the damping becomes still more rapid in the contracting cone 

((1 - Z / QWft ( e-Y(D)S)+ 

4. Systems with autonomous damping. Thenatureoftheenergydamp- 
ing in the systems (1.2 1 and (1.3 > depends essentially on the geometry of the domain, 
A class of systems with damping independent of the shape of the domain boundary can 
be extracted. Let us present one sufficient condition for autonomy of the damping. Let 

Q = dV, l%.f be arbitrary, &f (5) be a set of boundary conditions ona (x) induced 
by solutions of the problem with edge data from M’, the energy density be such that 
for any waI w,4 and any unit vector nk the inequality 

(4.1) 

holds 
Then by virtue of (1.1) s (4.1) and the inequality u < ru”au t awa + ~,~a 

au I aw,ka which follows from the convexity of U , we have 

Therefore, for any M we will have a Q y and E (CC) = E (0) eXP (- ar). 

For linear systems (4.2 f can be strengthened by setting the equality sign instead of the 
inequality and the coefficient ‘/a in front of the integral in first relationship in (4.2 1, 
Hence 2a Q y and 

E (x) < E (0) exp (- 2 az) (4.3) 

The inequality (4,l) can hold only in cases when the energy density depends ex- 
plicitly on wR. It is satisfied, for iustance , for systems with energy of the form 

U = Ur (UY) -+ us (UQ, maw, < consl Ii’, (4.4) 
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Plates on an elastic foundation, in particular, belong to systems of the type (4.4 >. 
In the case of one equation with the energy density 2U = w2 -I- h’wyiw,i ( h is 

a small parameter 1, a = h-1 and (4.3 ) together witha formula of the type (1.4) 
yield an elementary proof that the solution is in the nature of a boundary layer. 

5. Some estimates of Y. Let us examine the system of equations (1.1) 
in a cylindrical domain of finite height I, 0 < 5 < 1. Let us consider that U can 
depend explicitly on all the coordinates xi and be Independent of w’. We can write 
for the energy E (x) 

If the inequality 

u (x) I wau i a44 I c 07) (5.2) 

holds, then we obtain E (x) < a-‘( u> from (5.11, and therefore the estimate of 

y: a (2) < Y (a+ Let us indicate the sufficient conditions for compliance with 
the inequality (5.2 ) . Let u satisfy the constraints 

(5.3) 

If wa = 0 on part of the boundary of CC? by virtue of the boundary conditions, 
then as is known, the inequality Cl43 

ha (WOWa> < <w:crwa, Cl> (5.4) 

holds. We have from (5.3 ) and (5.4) 

1 (waau I awfx> 1 G (((au 1 a44 au I awp,> w~~,)yl~ < (5.5) 

(a-r (U> A-‘/* (wy=w,, ,-J>‘/* < a-‘llb%-l (U) 

Therefore, the inequality (5.2 ) with the constant a = (ab)W is valid. 
Now, let the boundary be free. If the edge data are self-equilibrated (&> = 0, 

then <auiaw,,y = 0. Hence 

<was> = <@I’ - <w”>) +> 
3% ,x 

(5.6) 

There remains to use the inequality 

A.2 ((w” - <W”>) (Wa - Cwa>)> < <WTawa, a> 
(5.7) 

instead of (5.4 1. The values of the constant h in (5.4) and (5.7 ) are understandably 
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distinct. Analogously to (5.5 ), we obtain a = (a@‘& from (5.6), (5.3 1 and (5.7 1. 
The functions a and b in the expression for a are related only to the char- 

acteristics of the system, and h to the geometry of the cross -section. Evidently 3L 
has the form h = h*lh, where 3L * is a function of just the shape of the cross - 
section, hence a = a*lh, a* is a function of the shape of the cross-section and 
the system characteristics . 

The case of a curvilinear cylinder and other non-cylindrical domains reduces to 

the coordinate transformation considered. Appropriate estimates will be satisfactory if 
the product a b is not too small, 

6. The constant y for a semi-infinite cylinder and eigen- 

valuerr. Only linear systems will be considered in the rest of the paper ( U is a 
positive quadratic form of the variables wa and w,~~). The solution of problems 1’ 
and 3 ’ of Sect, 3 for linear systems in a semi-infinite cylinder can be constructed in 
the form of series in functions of the form e-?P (.F) (the Greek superscripts a, p, 
Y, * * * run through the values 1, 2, . . ., n - 1 and correspond to coordinates in 

the plane 5 = 0). Hence u’ (P) and x are the eigenfunctions and the eigen- 
value of some eigenvalue problems. The nature of the damping of the solutions ( for 

qa E M”) is determined by the least eigenvalue 6. The question arises as to 
how 6 and y are related. 

Let us examine it first in an example of the system (1.2 1, Let us consider the 
energy density invariant for reflections relative to a plane perpendicular to the cylinder 
axis. This means that products of the form w,a w,, do not enter into (1.2 > , i, e. , 

2u = a?PB (xY) w, aw, jj + E (XU) wTx (6.1) 

A self-adjoint problem in the domain Sz is obtained to determine u (Xa) and 

x (v, are components of the normal vector to the boundary r of the domain 

(E”‘u, p),a + EX~U = 0, EaBu, pva 1~ = 0 (6.2) 

The appropriate eigenvalues are real, separated from zero, and their set is count- 
able. The eigenfunctions corresponding to different eigenvalues are orthogonal relative 
to the scalar products (E%L,~u,~> and <Euv>. Expanding the solution in a series 
of eigenfunctions, we can write for Y (the coefficients of the expansion include fac- 
tors in the eigenfimctions ) 

y - inf 2 U(k) 
I 

; U(k) (2x(k))-’ 
(6.3) 

?k) k 

2u(k, = (E=‘u(kj,au(k), p> + +k) @‘!k)) 

It hence follows that Y = 26. 
The problem of eigenfunctions for an elastic body is non-self-adjoint in contrast to 

the preceding problem, hence the eigennumbers are complex. It can be shown that 

Y < 24 where 6 is the minimum value of the positive real parts of the eigen- 
values. If the eigenfunction ui corresponding to the eigenvalue with real part 8 is 

orthogonal on energy to the remaining eigenfunctions, then Y = 26, otherwisey (26 . 
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7. The function fi (a~). In the self-adjoint problem examined in Sect. 6, 
y differs only by a factor from the least eigenvalues , and hence, passesses a number 

of remarkable properties resulting from the Rayleigh variational formula for the least 
eigenvalue ; in particular, Y is increased upon the imposition of constraints. The 
question arises: is this property not common for all problems 2. Without answering this 
question, let us however show that y can be estimated by a certain quantity fi pos- 
sessing a number of partial Rayleigh properties as lower bound. 

Let us assume that the energy density U satisfies the condition 

_avn 1 

( 
; au 

P awp, 
- nk <U (Xi, W”, Wfi) 

awy, ) (7.1) 

where /.r is independent of w’, w, ia, ni are components of the unit vector onS2 . 
We define fi (x) by the formula 

(7.2) 

In contrast to (2.1). the number of the ratio in (7.2) is determined by the bound- 
ary conditions on CI, and therefore, the solution of the boundary value problem 
enters into this ratio only in terms of the volume energy. We have from (7. I), (7.2) 

and (2.1) 
B (4 < Y (4 (7.3) 

The function fi (x) pcssesses the following properties (the term “less” is used 
throughout in the sense of “less than or equal to” ) : 

1) If the characteristics of the system with energy density U, are less than the 
characteristics of a system with energy density Us (in the sense that U, (x’, wa, 

W,ia) < U, (Xi, Wa, W,i’) for any xi:‘, w”, w,ia and pl-l < ps-l), then 
the corresponding values of the function PI (2) of the first system are less than the 
corresponding values of the function ps (x) of the second system. 

2) The function fi (x) grows with the expansion of the part of the boundary on 
which the values wa = 0 are given, 

3 ) Let the geometry of the domain V allow to set of periodic boundary con- 
ditions on S (for instance, V is a cylinder with cross-section in the form of a 
parallelepiped , and Q is the cylinder endface). Then the function & evaluated 
for the free surface s (pakn L= 0 on s), is less than &. (2) evaluated for the 
periodic boundary conditions. 

4) Let us examine the partition of the domain V (X) by a surfaceR (z) into two 
subdomains VI (z) and Vs (I), and let Q, (2) and Q2, (CC) denote the parts 
of Sz (x) lying on the boundaries of V, (5) and Va (x) , whilemr (2) andikfs (x) 
are sets of boundary conditions induced by theset M (5) on 52, (x) and Qs (a~). We 
define PI (x) by (7.21, in which V (2) isunderstood tobe V, (z) while Q (x) is 

a2, (x), and the Set Mn (X) of boundary conditions of the form paLnk = P, is 
taken on R (x) so that the problem for the domain V, (3) would be solvable. ‘J&n 
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pa (2) is defined analogously, where the boundary conditions pal’nk = -r, are 
taken on R . Then P (4 > min (PI (4, Bz (x)). 

5) Let paknk = 0 on ,!? . We examine the domain v, (2) imbedded in 
V (2) and such that the boundary of 

81 (2) 

V, (2) contains Q (z). We define thequantity 
by the relationship (7.2 > in which Ev is understood to be the energy of the 

solution of the boundary value problem for the domain Vi (2) with homogeneous 
boundary conditions pafcnk = 0 outside Q (x). Then & (x) < j3 (x). 

The properties presented for B (2) are due to the corresponding properties of the 
energy (see the appendix in [S ] > . 

By using the property 11, it is possible to estimate Bz (5) in terms of the function 
b1 (z) of a simpler system (for example, lJ1 can be taken as the energy density of 

an isotropic body with the Lam& coefficient h = 0 in problems of the theory of an- 

isotropic elasticity > . The properties 2) and 3 > show that B (5) increases upon the 
imposition of additional kinematic constraints. On the basis of properties 4) and 5) 

there is the possibility of estimating fi (x) in terms of values of 8r (2) for bodies 

with simple geometric shape. (This method was used in [6] ) . In particular, the proof 

of the positivity of y for a body of arbitrary shape can be based on the property 5) 

and (7.3 > ; it is sufficient to show that the quantity 8 is not zero, for example, for 

a contracting cone with a sufficiently blunt angle at the apex. 
For a cone of height h resting on a domain of diameter h, evidently fl= 8* / h. 

Hence, for example, for a homogeneous elastic curvilinear rod of constant cross- 
section, we obtain the estimate B* i h d y by virtue of (‘7.3) and the property 5) 

by inscribing a cone resting on the cross-section, which will assure exponential damping 
of the solution with removal from the endface, with at least the velocity 8* / h. 

It is interesting to clarify how rough is the estimate of Y in terms of p (7.3 1. 

We show that in problem lo of Sect. 3, /3 is half y for the system (1.2). We have 

i = 2E (P) from (7.1). Writing down a formula analogous to (6.3) for Y for p 
and taking into account that (E%(k), au(k), p> = x(k)’ <EU(k,2>, We obtain p = 6. 

It follows from the formulation of the eigenvalue problem (6.2 ) that 6 agrees 

with the least frequency o of the free natural vibrations of a system with the po - 

tential energy (6.1) and the kinetic energy 112E~,t2. The relation p = w together 

with the definition (7.2 ) written for a cylindrical domain results in a new variational 

forrhula for the least eigenfrequency . 

8. On exponential damping of the solution at the edge of a 
thin cylindrical domain. Let V be a cylinder with height h and cross- 
sectional diameter L, h<L. In what boundary value problems posed for a linear 
system of the form (1.1) will the solution decrease with distance from the edge ( cy - 
lindrical part of the boundary ) , at least exponentially, with the exponent of the form 

clh, where c is a number z , 
Let us extract a (n - 1 ) -dimensional strip in V Fig. 4). This strip is a 

cylinder with cross-sectional diameter considerably less than the length. The exponen- 
tial damping conditions in such cylinders have been formulated in Sect. 3. It is natural 
to assume that upon complying with these conditions on each strip cut from Fr, the 

solution will damp exponentially as a whole. Let us describe the class of systems for 
which the assumption expressed turns out to be valid. 
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Let us dispose the cylinder relative to the 

coordinate axes exactly as in Sect. 6, 

-h/2 < x < h/2, let T, and T_ 
denote the plane faces of the cylinder, 
and T and I’ a section of the cylinder 

conditions on T,, T_ are taken so that 
the “work of the external forces” would be zero at each point of T,, T_ , i. e. , 

waau J awy, = 0 (8.1) 

Let us introduce a one-parameter family of contours I? (r) andthecorresponding 
cylindrical surfaces Q (r) = I’ (r) x [--h/2, h/2], as is shown in Fig.4. Using 
(8.1) and (1.1)) the solution for the energy in the domain V (r) can be written as 

E(r) = & waya -.$->a~ 
,a 

(8.2) 

Here and henceforth < * > is the integral with respect to 5 between the limits 
- h/2, h/2, and Va are components of the external unit normal vector. That the 

decrease in E (r) is exponential can be proved if the inequality 

E (r) < c-‘h s (U> ds, c = const 
I‘ 

(8.3) 

is successfully deduced. 

We then obtain a lower bound for y from (2.1) : c/h < y, which indeed as - 
sures the required nature of the damping. 

Let us enlarge the integrand in (8.2 > by using the Cauchy - Buniakowskiinequality 

<wavaaU I awaa> Q (( VaVB (au / aW”,) au j dZ&, a) (Wb?$))” 
(8.4) 

The first factor in (8.4) is estimated in terms of (u) if the system possesses the 
property (7.1). An estimate for the second factor in (8.4) in terms of ( U) is possible, 

for instance, for systems satisfying the condition (4.4). Furthermore, let us examine 
the less trivial case when iJJ is explicitly independent of W” and the estimate of 

<wawa> in terms of (U) is performed by using the inequality 

(8.5) 

as in Sect. 5. The inequality (8.5) is valid if wa satisfy the constraints, except the 
translation in t4ra by a constant. For example, (w”) = 0 or wa (h/2) = 0 
or it is known that wa (2, Y) are odd functions, etc. Therefore, for systems sat - 

isfying (7.11, as well as the condition 
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b aw” aw, --<u ax az (8.6) 

the inequalities (8.4 )- (8,6) result in the required inequality (8.3 ) , This means is 
successfully realized for the system (6. L ) s in particular. 

Exponential damp~g of the energy holds in the following boundary value problems 
for the system (6.1) . 

l,@. 
and T_ ; 

The domain I? is divided into two parts rp and r,, w,, = 0 on T, 
Ea@ w,pv, = q (%a, 4 on r, x I-442, b/21; 

r, x r--h/2, h/21, where 
w = S (p, s) on 

(p) = 0 on r,, (~a) = 0 on ru, (8.7) 

ZO. The boundary conditions are arbitrary on Q , w=o on J?‘, and 

ww,x =o onT_. 

PI o o f l Let us integrate (1.1) written for the system (6.1) with respect to x 
within the limits - hi% h/2. Taking account of the boundary conditions, we obtain 
for the boundary value problem 1 o 

(E”P <W>,J$ = O (8.8) 

The solution of the boundary value problem (8.8) for Tut # 0 is unique and 
has the form 

(w) = OinT (8.9) 

If r,= 0, then it follows from (8,8) that <w) = con&. Since the solution 
of the initial problem in V is determined to the accuracy of a constant for I’, = 0, 
this constant can be selected so that (8.9) would be satisfied. Now (8.5) holds with the 
best constant A* = A, by virtue of (8.9) while the best constant in the inequality 
(8.6) is 6 = E/2. We find from (8,4) -(8.6) 

(wvaEaPW,p) < ((@+‘Q&,“W,,> <@>)““< hn-’ (<EapE,,,w,,w,p) (I&>)“~< (8. lo) 

hn-‘v-’ ( U > , v = min (E (z”) / Enldx (z”))‘/~ 
r‘+T 

where E,,, is the maximum eigenvalue of the tensor EcrS . Substituting (8.10) 
into (8.2 ) results in (8.3 ) with the constant c = 2nv. The proof for the boundary 
value problem 2 ’ requires no derivation of an inequality of the type (8.9 ),since the 
~~a~~ (8.5 ) turns out to be valid directly because of the boundary condition on T+ 
with the best constant h* =5 n/2. In this case we obtain c = zcy for the damping 
constant c . 

Let us emphasize that the energy damps exponentially with a velocity 2nvlh in 
boundary value problem 1’ and velocity nv,fh in boundary value problem 2 “ineach 

(n - 1) -dimensional strip R with induced boundary conditions for a homogeneous 
medium. This verifies the assumption expressed at the beginning of Sect. 8, and shows 
that the values obtained for the constants c are best, For inhomogeneous anisotropic 
media, the estimate obtained can be strengthened since the inequality (8.3 ) remains 
valid if the constant c is related to v by the previous formulas and v is understood 
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to be a function of P 

v (7-) = min (E (za) / E,,,, (sa))‘ll 
z%zr(+) 

We hence find for E (F) in problem 1’ 

E(r)<E(O)exp[-+‘v(r)dr 
i 1 
0 
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(8.11) 

The factor 2n in (8.11) is replaced by 3t in boundary value problem 2 ‘. 
Let us note that the reasoning presented extends word for word to a system for 

which E’P = AGP (xY)~ (z), and E is an arbitrary positive function of 5, Pp. 
This permits making a deduction about the exponential damping of the solutions in 

domains whose mapping on a cylinder results in an equation with the mentioned depen- 

dence of the coefficients on the coordinates. 
Let us turn to an analysis of analogous questions for the system of equations of el- 

asticity theory by considering that the elastic properties are invariant for reflection re- 
lative to a plane parallel to the middle plane 

2U = EaSYsq+,a + 2EaBe,,.,e + Ee= + 4Gaseaeg, GOa 3 eav EOO = 8 (8.12) 

It turns out that, in contrast to the system (6.11, a penetrating solution (not de - 
creasing exponentially) can exist even if the total forces and moments equal zero on 

the endface of each strip fi (see Sect. 10 1. Nevertheless, a number of particular 
cases is successfully isolated when the energy damps exponentially. Time cases are 

listed below. 

1’. The coefficients are Eap = 0 (the Poisson’s ratio equals zero in the iso- 
tropic case ), T, and T_ are load-free (pi” = 0), p%, = qi (P, S) on 

rp X [--h/2, h/2] ; Wi = Si (X”, X), on ru, X [--h/2, h/2] ;’ q” and ra 

are even functions of_ 2, r” and q” areoddfunctionsof X , and moreover 

(q) = 0 on I?*, (s) = 0 on ru, (8.13 1 

2”. wi = 0 on T, , either wi = 0 or p’” = 0 on T_ , and the 
conditions are arbitrary on Q . 

3O. The coefficients EzP = 0, w” = 0, pa0 = 0 on T, , pi0 = 0 on T , the 
boundary conditions on 9 are the same as in problem 1, however, qi and si-are 

not absolutely subject to the evenness conditions. 
The proof is carried out according to the same scheme as for the system (6.1). 

9. On the construction of solutions of problems in thin cY- 
lindrical domains with an error lets than any degree of relative 

thickness. The solution in thin cylindrical domains is ordinarily sought in the form 
of series in a small parameter hlL = h,. The error in the approximate solutions 

obtained in this manner is 0 (!z,~), the exponent n depends on the number of 

terms retained in the series Cl5 - 17 1. The assertions formulated in Sect. 8 permit 
an indication of the method of constructing the approximate solutions, which differ 
from the exact solution by a quantity less than any power of h,. 
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Let us describe it in the example of the following boundary value problem for the 
system ( 6.1) 

BW 
,x 

= qf (~a) on, T,, T- 

Eap~,,vi3=q(~a,2) on r,X[--h/Z,hi2] 

w=s(P,z) on r,,,X(-h/2,11/2] 

We shall seek the solution in the form of a sum w _ &.* (z, J.I) -(- II (P) -I- 

w’ (z, la), where w* is the solution of the problem in an infinite layer bounded by 

the planes T+ and T_, the boundary values q* (x”) are continued to all values of 
xa by some method, u (z*) is the solution of the problem 

T, E’% 
(E%,&p = 0 in 

v ‘a P = (q - EaPw*,,vp> on rP, and u = <s - ?L’*) on rw. We therefore 

obtain the bcundary value problem 1’ for w’ . Therefore, w’ damps exponentially 
with distance from the edge with an exponent c / h in the exponential, hence, the 

error of the approximate solution w = w* + u as h, -+ 0 is less than any power 

of he at any fixed point. The continuation of the function qf (x”) should be 
chosen so that the edge data for w’ would be on the order of q+ (x”) or less. Then 

the amplitude of the exponentially decreasing function w’ will be of the same order 
or less than the amplitude of the approximate solution. 

The approximate solution of other boundary value problems is constructed ana - 
logously . Let us note that the property mentioned in Sect, 7 for the boundary value 
problem 3 ’ for an elastic body permits the construction of a “hyperfine” solution of 

the problem concerning a stamp. 

10. Supplemant. Let us consider a plate whose face surfaces are load -free. 
Surface forces are given at the plate edge so that the total force and moment equal 

zero along each transverse fiber. 
We shall show that the state of stress can nevertheless be penetrating, i. e., does 

not damp out exponentially with the velocity const /L-I. We shall consider the plate 

semi-infinite (I 2 1 f h / 2, 1 u I < $ co, 0 < z < _1- CU), isotropic, and for sim- 
plicity we set the Lam6 coefficient ?, equal to zero. We take the boundary condi - 

tions in the form 
3 

aSxQ sin (2s - 1) nxl~-l 
i 

(10. 1) 
J=1 

a8 (xs2 + k2) sin (2s - 1) nxh-1 ) 
.9=1 

3 

d 
XL 

= - ykh-1 n cos ky 
c 

as (2s - 1) cos (2s -- 1) nxh-1 

S=l 

x, = h-1 (JP (2s - I)2 + kW)‘/t 

Here p is the shear modulus, and k, a, are fixed numbers. It is easy to con- 

struct the solution of this problem 
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w = -k-‘e -RZ 
x cm ky (10.2) 

3 

wy = - xeskz sin ky - sin ky c as%e -xsz sin (2s - 1) 7&r1 
S=l 

3 

Wz = -- XCskr cos ky - k cos ky 
r: 

oseoxsr sin (2s _ 1) nzh-1 

Sl 

The solution has been constructed from bihacmonic and vortex solutions [15]. It 
contains a penetrating pact (the first terms in (10.2 ) ) and a boundary layer. 

Let us impose constcaints on the boundary data (10.1): <%x) = (%& = <u,,> 
= 6. These constraints ace a system of threelinear inhomog~e~ equations in al, 
a2, a3. The system determinant A is given by the formula A = psk4h4 (2x, - 

3%+4r,) and differs from zero. Let us take the solution of this system as a, in (10. l), 
then the total force and moment on each transverse fiber will equal zero for z = 0 , 

ft can be verified that the a, ace on the order of h2, thecefoce, oUzr crux - 1, 
u .zt,t o,,. or/~ - h for z==o . In the penetrating pact of the solution o,,, ovz, 
%?I -h, osx = o,, = o,, crc 0. This is in agceement with the formulation of the 

Saint- Venant principle in the theory of plates given by Vocovich C151. 
The example constructed shows that the refined two-dimensional equations of 

plate theory which takes account only the total force and moment on the edge, cannot 
coccectly describe corrections on the order of h , It also follows from this example 
that when only the total force and moment are known on each tcansvecse fiber at the 
plate edge, but the exact surface force distribution along the transverse fibers is un- 
known, the constcuction of the state of stcess with terms on the order of h taken into 
account is impossible, and the greatest achievable accuracy is yielded by the classical 
two-dimensional equations. 
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